
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Document Checker Using String Matching and

Regular Expression

Benardo - 13522055

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

13522055@std.stei.itb.ac.id

Abstract— In this paper, the authors present a document

checker using string matching and regular expressions. Today,

documents are essential in various fields, including education,

work, law, and many others. In some fields, documents must be

written perfectly, without any typos or errors. Manually checking

each word can be time-consuming, especially if the document

contains thousands or even tens of thousands of words. This

paper aims to create a document checker to help users review

their documents efficiently. The methodology involves

implementing the Knuth-Morris-Pratt (KMP) and Boyer-Moore

(BM) algorithms for string matching. For word suggestions,

Levenshtein Distance is used. Other checks, such as sentence

structure, capitalization at the beginning of sentences, avoiding

excessive spaces, and ensuring each sentence ends with proper

punctuation, are handled using regular expressions. This tool

aims to assist users in producing error-free documents with

greater ease and accuracy.

Keywords— String Matching; Knuth-Morris-Pratt Algorithm;

Boyer-Moore Algorithm; Levenshtein Distance; regular

expressions; document checker

I. INTRODUCTION

In today's world, documents play a crucial role across
various domains such as education, professional work, law, and
more. The necessity for accurate and error-free documentation
is paramount in many of these fields. For instance, legal
documents must be written without any typographical errors or
mistakes to ensure clarity and precision. Similarly, academic
and professional writings need to maintain high standards to
convey the intended information effectively. However,
manually checking documents for errors is a time-consuming
and tedious task, especially when dealing with lengthy texts
containing thousands or even tens of thousands of words. This
process not only demands considerable time and effort but is
also prone to human error. The traditional approach of
proofreading each word and sentence is inefficient and can lead
to oversight of subtle mistakes.

A document checker is a tool designed to automate the
process of identifying and correcting errors in a text document.
This tool can significantly enhance the efficiency and accuracy
of the proofreading process by leveraging advanced algorithms
and techniques to detect various types of errors, including
typographical errors, grammatical mistakes, and stylistic

inconsistencies. The need for a document checker arises from
the increasing volume of written communication in both
personal and professional contexts. With the growing reliance
on digital documentation, ensuring the correctness and quality
of written content has become more critical than ever. A
document checker can help individuals and organizations
maintain high standards in their written communication,
thereby improving overall productivity and reducing the risk of
miscommunication or misinterpretation.

Figure 1. Example Typo in Sentences
Source : Author’s personal documentation

Figure 2. Example of Lacking Noun on a Sentences
Source : Author's personal documentation

This paper aims to develop a robust document checker that

employs string matching algorithms and regular expressions to
detect and correct errors in text documents. Specifically, the
Knuth-Morris-Pratt (KMP) and Boyer-Moore (BM) algorithms
are utilized for efficient pattern matching, while the
Levenshtein distance algorithm provides word correction
suggestions. Additionally, the tool incorporates regular
expressions to enforce grammatical rules such as capitalization
at the beginning of sentences, proper punctuation, and
avoidance of excessive spaces.

By addressing the challenges associated with manual
proofreading, this paper seeks to create a tool that not only
enhances the accuracy and quality of documents but also saves
time and effort for users. The proposed document checker aims
to be a valuable asset for writers, educators, professionals, and
anyone who engages in extensive written communication,
ensuring their documents are error-free and well-structured.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

II. THEORY AND CONCEPTS

A. String Matching

String matching, also known as pattern matching, is an
algorithm used to locate occurrences of a specific pattern
within a large text. This fundamental algorithm has widespread
applications, including search engines, text recognition
systems, natural language processing, and more. The primary
goal of string matching algorithms is to identify positions
where the pattern matched a substring within a text. In string
matching, the text is typically a long string of character (with
the length m), while the pattern is a shorter string that we are
looking for within a text (with the length n), so we can assume
that m << n.

There are two concepts that related in string matching:

1. Prefix: Prefix is a substring that appears at the
beginning of a word and can alter the meaning of the
original word. Prefix must be located between [0…m -
1].

2. Suffix: Suffix is a substring that appears at the end of a
word dan can alter the meaning of the original word.
Suffix must be located between [1...m-1].

 String matching algorithms can be categorized based on the
direction in which they search:

1. From Left to Right
This is the most natural direction, like how we read
text. Algorithms in this category include the Brute-
Force algorithm and the Knuth-Morris-Pratt (KMP)
algorithm.

2. From Right to Left
Searching from right to left often yields better practical
results. An example of an algorithm in this category is
the Boyer-Moore algorithm.

3. In a specific order
Some algorithms search in a specific order determined
by the algorithm itself, which can provide the best
theoretical results. Examples include the Colussi
algorithm and the Crochemore-Perrin algorithm.

 Generally, there are 3 main algorithms for performing
string matching:

1. Brute Force Algorithm
The Brute Force algorithm, also known as the Naïve
algorithm, is the simplest form of string matching. It
operates by sequentially matching the pattern against
every possible position in the text until a match is
found or the text is completely searched. The process
involves:
a. Comparing the first character of the pattern with

consecutive characters of the text.
b. If a match is found, the subsequent characters are

compared until the characters do not match or the
entire pattern matches with a substring in the text.

c. If a mismatch occurs at any point, the pattern is
shifted by one character to the right, and the

comparison begins anew from the first character
of the pattern.

d. This continues until the pattern is either found
within the text or the search reaches the end of
the text.

Figure 3. Example of Bruteforce algorithm

Source :
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/Pencocokan-string-2021.pdf

The primary disadvantage of the Brute Force
algorithm is its time complexity, which is typically
O(nm) in the worst-case scenario, where n is the
length of the text and m is the length of the pattern.
For the best-case scenario, the complexity is O(m),
occurring when the first character of the pattern fails
to match the first character of the text. This makes the
Brute Force algorithm inefficient for large texts or
when the pattern is considerably long.

2. Knuth-Morris-Pratt Algorithm (KMP)

The Knuth-Morris-Pratt Algorithm is developed
independently by Donald Knuth, Vaughan Pratt, and
James Morris in the 1970s. The KMP algorithm
enhances the efficiency of string matching by
avoiding redundant comparisons. The Knuth-Morris-
Pratt (KMP) algorithm looks for the pattern in the text
in a left-to-right order (like the brute force algorithm),
but it shifts the pattern more intelligently than the
brute force algorithm. The KMP process involves:
a. Starting the comparison of the pattern with the

text from the leftmost side.
b. If the character matches, it will continue

comparison to the next indices of both the text
and the pattern.

c. If the character in the text is not match the
character in the pattern, it will find the largest
prefix of P[0...j-1] that is a suffix of P[1..j-1]

d. The process continues until the pattern is found
or the text is fully searched.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Figure 4. Example of KMP algorithm

Source :
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/

2020-2021/Pencocokan-string-2021.pdf

The Knuth-Morris-Pratt (KMP) algorithm
significantly enhances the efficiency of string
matching by utilizing a concept known as the border
function. This function plays a critical role in
determining how far the pattern should be shifted
when a mismatch occurs during the matching process.

The border function, denoted as b(k), is defined as the
length of the longest prefix of the pattern P[0...k] that
also serves as a suffix within the substring P[1..k].
Here, k represents the position in the pattern
immediately preceding the point of mismatch.
Essentially, the border function calculates the greatest
extent to which a substring around the mismatch can
still be considered a repetitive segment of the
beginning of the pattern. This ensures that upon a
mismatch, the algorithm does not reevaluate
characters that have already been matched.

Figure 5. Example of KMP Algorithm using Border

Function
Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/
2020-2021/Pencocokan-string-2021.pdf

The preprocessing of the pattern ensures that the KMP
algorithm significantly reduces the worst-case
complexity to O(m + n).

3. Boyer-Moore Algorithm (BM)

The Boyer-Moore algorithm represents a significant
advancement in string matching, offering a more
efficient approach than its predecessors like the Brute
Force and Knuth-Morris-Pratt algorithms. It is
particularly effective for large text sizes or when the
alphabet of the text is relatively small. This algorithm
is distinguished by its use of two primary techniques:

A. Looking Glass Technique

The Boyer-Moore algorithm initiates its search
from the end of the pattern, moving backwards—
a method known as the Looking Glass
Technique. This approach allows the algorithm to
skip over large sections of the text, thereby
reducing the number of comparisons. By starting
at the last character of the pattern and comparing
backwards, it maximizes the potential for
skipping characters that do not match,
accelerating the search process significantly.

B. Character Jump Technique

When a mismatch occurs, the Boyer-Moore
algorithm employs the Character Jump
Technique. This technique determines how far
the pattern should be shifted along the text. The
shift depends on two main scenarios:

1. Last Occurrence within the Pattern

If the mismatched character is found
elsewhere in the pattern, the algorithm shifts
the pattern so that the last occurrence of the
mismatched character aligns with its current
position in the text. This is often the most
significant jump, skipping as many
characters as possible that do not need to be
checked again.

2. Character Not Found

If the mismatched character does not appear
in the pattern, the pattern is shifted
completely past this character in the text.

Figure 6. Example of BM Algorithm

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/

2020-2021/Pencocokan-string-2021.pdf

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

 To search for the last occurrence of a character,
Boyer-Moore Algorithm has a function that is called last
occurrence function or called L function. This function
maps all characters in P into an integer that represents the
last occurrence index. If the character doesn’t exist in the
pattern, the value will be -1. Below is the example of last
occurrence function

Figure 7. Example of Last Occurrence Function
Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/

2020-2021/Pencocokan-string-2021.pdf

The complexity of Boyer-Moore algorithm for its worst
case is O (nm + A). Boyer-Moore is fast when the alphabet
(A) is large, slow when the alphabet is small). For
searching English text, Boyer-Moore is significantly faster
than brute force.

B. Levenshtein Distance

Levenshtein distance, also known as edit distance,

quantifies the dissimilarity between two text strings by

counting the minimum number of operations required to

transform one string into another. These operations consist

of insertions, deletions, and substitutions of a single

character.

 The essence of the Levenshtein distance is to

determine how many edits are needed to convert one word

into another word. For instance, to transform

“INTENTION” to “EXECUTION”, we need five

operations: three substitution, one insertion, and one

deletion, so the Levenshtein distance result is five,

indicating that five edits are required to equate two words.

Figure 8. Levenshtein Distance in Mathematical Form

Source:

https://medium.com/@ethannam/understanding-the-

levenshtein-distance-equation-for-beginners-c4285a5604f0

C. Regular Expressions

Regular Expressions or regex are patterns used to

match sequences of character within strings. This powerful

tool is integral for searching and manipulating text, making

it invaluable for string processing tasks across various

applications and programming environments. Regular

expressions are supported across various programming and

scripting languages, including Python, PHP, Java and

others. Regex provides a compact and efficient means to

perform text searches, replacement, and manipulation in

one single code.

Regular expressions are composed of literals and

metacharacters. Metacharacters are special characters that

enhance the capabilities of regex by allowing more

complex matching rules. Here are some fundamental

components used in regular expressions:

1. Character Classes

Specify a set of characters to match from within

a text. For example, [abc] will match any single

character of 'a', 'b', or 'c'

2. Negated Character Classes

Denoted by [^abc], matches any character except

'a', 'b', or 'c'

3. Range Matches

Such as [a-zA-Z], which matches any

alphabetical character

4. Escape Sequences

To match a character having special meaning in

regex, you need to use a escape sequence prefix

with a backslash (\). E.g., \. matches "."

Figure 9. Regex Syntax
Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2022-
2023/String-Matching-dengan-Regex-2019.pdf

III. IMPLENETATION

In this chapter, the author will explain the functionality of
the program, which is implemented in Python and utilizes
string matching algorithms such as Knuth-Morris-Pratt (KMP)

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2022-2023/String-Matching-dengan-Regex-2019.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2022-2023/String-Matching-dengan-Regex-2019.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

and Boyer-Moore (BM) to ensure that each sentence contains
at least one verb and one noun. The program will also
implement Levenshtein distance algorithm to give
recommendation word for the word that doesn’t exist int the
dataset. Additionally, regular expressions (regex) are employed
to verify the correctness of sentences.

In this program, author use Kaggle’s datasets that contains
approximately 370000 English words with tags.

(source: https://www.kaggle.com/datasets/ruchi798/part-of-
speech-tagging)

However, the dataset contains several mistakes in its tags, so
the author uses Python libraries such as spaCy to correct the
tags for each incorrectly tagged word.

A. Knuth-Morris-Pratt (KMP) Algoritm Implementation

KMP Algorithm is divided into two functions, which

are ‘kmp_search’ and ‘border_function’. The

‘kmp_search’ function accepts three inputs, such as text,

pattern, and table (which is the border function of the

pattern). This function returns True if the pattern matches

and False if it does not. The ‘border_funtion’ function is

used to computes the lengths of the longest proper prefix

pf the pattern that is also a suffix, which helps in

optimizing the search process by skipping unnecessary

comparisons.

Figure 10. KMP Algorithm Implementation

Source: Author’s personal documentation

B. Boyer-Moore (BM) Algorithm Implementation

The Boyer-Moore search algorithm implemented in

the provided code aims to find a pattern within a text

efficiently. The ‘last_occurance_function’ creates a

dictionary mapping each character in the pattern to its last

index position. The ‘boyer_moore_search’ function then

uses this dictionary to search for the pattern within the text.

Starting from the end of the pattern, it compares characters

with the text, shifting the pattern efficiently upon a

mismatch. If a match is found, it returns True; otherwise,

it continues to shift and search. If no match is found after

traversing the text, it returns False. This approach

reduces unnecessary comparisons, improving search

performance compared to naive algorithms.

Figure 11. BM Algorithm Implementation

Source: Author’s personal information

C. Levensteince Distance

The provided code calculates the Levenshtein

distance, which measures the minimum number of edits

(insertions, deletions, or substitutions) needed to transform

one string into another. The function Levenshtein distance

uses dynamic programming, initializing a previous_row to

represent distances for transforming prefixes of s1 into

prefixes of s2. It iterates through characters of s1 and s2,

computing insertion, deletion, and substitution costs,

storing the minimum cost in current_row. After

processing, the final value in previous_row is the

Levenshtein distance between the strings, efficiently

comparing their similarity.

https://www.kaggle.com/datasets/ruchi798/part-of-speech-tagging
https://www.kaggle.com/datasets/ruchi798/part-of-speech-tagging

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Figure 12. Levenshtein Distance Implementation

Source: Author’s personal documentation

D. Regular Expressions Implementation

The check_sentence_rules function utilizes regular

expressions to validate sentence structure and punctuation

within a document. It splits the document into sentences

using (?<=[.!?])\s+|\n+ to match end-of-sentence

punctuation followed by whitespace or newlines. It checks

capitalization at the beginning of sentences with ^"?\s?[A-

Z], ensuring sentences start with an uppercase letter. It

detects multiple consecutive spaces using \s{2,}, and

verifies sentences ending with appropriate punctuation via

.*[.?!]$. Additionally, it identifies punctuation spacing

errors where periods or commas are not followed by

spaces using \.([A-Za-z]) and ,([^ \n\"]). These regex

patterns collectively help identify and report common

grammatical errors.

Figure 13. Regrex Implementation

Source: Author’s personal documentation

E. Program Flow

Figure 14. Main Program

Source: author's personal documentation

Here is a detailed program flow for this document checker

implementation:

1. Load the Dataset

The program first will load the dataset that containing

words and their parts of speech tags from a CSV file

using the load_words function. The data will be stored

in a variable called ‘words_pos’, which is a dictionary

where each part of speech tag maps to a set of

corresponding words.

Figure 15. load_words funtion

Source: author’s personal documentation

2. Load the Document

The program will ask the document file name , that

user want to check with the algorithm. Then, it will

load the document that needs to be checked from a

text file and store it in a variable called ‘document’.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

3. Validate Words

The program will call the ‘validate_words’ funtion

with the document and word_pos as arguments. This

function will checks each word in document to see if it

is present in the dataset. If not , it is added to the

not_found list , and then it will use Levensteince

Distance to find the closest word and provides

suggestions for corrections.

Figure 16. validate_words function

Source: author’s personal documentation

4. Check Sentences Rules

The program will call ‘check_sentences_rules’ funtion

with document and words_pos as arguments. This

function will split the document into individual

sentensces using regex to handle punctuation and new

lines. Then, for every sentence, the function will

check the Capitalization at the beginning of the

sentence, no multiple space within words, sentences

must end with a period, question mark, or exclamation

point, proper spacing around punctuation using Regex.

This funtion will also check foreach sentence must

contain at least one noun and one verb using KMP or

Boyer-Moore algorithms.

The implementation of ‘check_sentences_rules’

function can be seen at Figure 13. In that function will

call ‘check_noun_verb_presence’ function to check if

a sentence contains minimum one noun and verb. In

this function, it will using KMP or BM algorithm to

match every noun and verbs in dataset to the sentence.

If none of the nouns or verbs exist in the sentence, it

will return an error message.

Figure 17. check_noun_verb_presence function

Source: author’s personal documentation

5. Output Results

The program prints the list of words that were not

found in the dataset and the suggested corrections.

The program will also print a list of sentences that

contain several mistakes.

IV. EXPERIMENT

Here is some experiment for the program with several test
case document that has been prepared:

1. Test Case 1

Using KMP Algorithm

Figure 18. Test Case 1 with KMP
Source: author’s personal documentation

Using BM Algorithm

Figure 19. Test Case 1 with BM
Source: author’s personal documentation

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

2. Test Case 2

Using KMP Algorithm

Figure 20. Test Case 2 with KMP
Source: author’s personal documentation

Using BM Algorithm

Figure 21. Test Case 2 with BM
Source: author’s personal documentation

3. Test Case 3

Using KMP Algorithm

Figure 22. Test Case 3 with KMP
Source: author’s personal documentation

Using BM Algorithm

Figure 23. Test Case 3 with BM
Source: author’s personal documentation

4. Test Case 4

Using KMP Algorithm

Figure 24. Test Case 4 with KMP
Source: author’s personal documentation

Using BM Algorithm

Figure 25. Test Case 4 with KMP
Source: author’s personal documentation

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

V. ANALYSIS

Based on extensive testing with various test cases, the
program demonstrates the effective application of string
matching algorithms for document checker. The program
successfully identifies all errors present in the test cases and
provides accurate and relevant suggestions for misspelled
words. This enhances the overall functionality of the document
checker by ensuring that misspelled words are not only
detected but also corrected with appropriate recommendations.
The program performs well in checking sentence structures,
meeting the expectations for basic grammatical rules. It
correctly identifies sentences that lack either a noun or a verb.
However, this approach has limitations since it does not
consider the proper sequence of nouns and verbs within a
sentence. A sentence might contain both a noun and a verb, but
the order could be incorrect, which the program does not
currently address. Despite this, the program effectively ensures
that each sentence starts with a capital letter and ends with
appropriate punctuation marks such as periods, question marks,
or exclamation points. Additionally, it detects extra spaces
within sentences, ensuring proper spacing and formatting. All
these aspects were correctly identified in the conducted test
cases, indicating the program's robustness in handling various
sentence rules.

For the execution time, it can be observed that the program
takes more time when using the BM algorithm compared to the
KMP algorithm. This is primarily due to the complexity of
preprocessing BM, which involves creating the last occurrence
table. Additionally, because the pattern length is short, the
advantages of BM are not fully realized.

VI. CONCLUSION

Based on the theory and experiments conducted, it can be
concluded that the application of string matching algorithms
like KMP, BM, regex, and Levenshtein distance can effectively
check the correctness of a document. Sentence structures can
also be verified using string matching and regex for elements
such as capitalization, ending punctuation marks, and proper
spacing. The most efficient algorithm for matching in this
application depends on the pattern size. Since the pattern size
corresponds to words in the dictionary, it is concluded that the
KMP algorithm is more suitable than BM for this application
due to the shorter pattern length. This application can help
users check their documents more effectively, eliminating the
need for manual verification.

However, this application of string matching and regex for
document checking has limitations. It does not verify the
grammatical correctness of sentences or their proper order,
such as ensuring Subject + Verb structure, or checking for
correct use of plural and singular forms. Therefore, the current
program can be further optimized and upgraded to include
grammar checking, making it even more beneficial for the
community.

VIDEO LINK AT YOUTUBE

For more detail explanation, video can be seen at
https://youtu.be/qCGdBVRAom8?si=tZCtwoY6DPeGCcu6

.

APPENDIX

The complete program of this document checker
implementation can be found below:

https://github.com/Benardo07/document_checker

ACKNOWLEDGMENT

First and foremost, I would like to express my gratitude to
God for providing me with the strength and perseverance to
complete this paper. Additionally, I would like to extend my
sincere thanks to my friends who have continuously supported
me throughout this journey. I am also deeply grateful to the
professors of the Algorithm Strategy class, Mr. Rinaldi Munir,
Mr. Rila Mandala, and Mrs. Nur Ulfa, for their invaluable
guidance and for providing essential materials related to
algorithm strategy.

REFERENCES

[1] Munir, Rinaldi. “Pencocokan String (String/Pattern Matching).”,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Pencocokan-string-2021.pdf. Accessed 10 June 2024.

[2] Munir, Rinaldi. "String Matching dengan Regex.",
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2022-2023/String-
Matching-dengan-Regex-2019.pdf. Accessed 10 June 2024.

[3] Supardi. "Analisis Penerapan Algoritma String Matcing pada Aplikasi
Pencarian Berkas di Komputer.",
https://repository.uinjkt.ac.id/dspace/bitstream/123456789/15152/1/SUP
ARDI-FST.pdf. Accessed 10 June 2024.

[4] Nam, Ethan. "Understanding the Levenshtein Distance Equation for
Beginners.", https://medium.com/@ethannam/understanding-the-
levenshtein-distance-equation-for-beginners-c4285a5604f0. Accessed 11
June 2024.

[5] Chua, E.H. "How to Use Regular Expressions.",
https://www3.ntu.edu.sg/home/ehchua/programming/howto/Regexe.htm
l. Accessed 11 June 2024.

STATEMENT

I hereby declare that the paper I wrote is my own work, not an

adaptation, or a translation of someone else's paper, and it is

not plagiarism.

Bandung, 12 Juni 2024

Benardo 13522055

https://youtu.be/qCGdBVRAom8?si=tZCtwoY6DPeGCcu6
https://github.com/Benardo07/document_checker
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2022-2023/String-Matching-dengan-Regex-2019.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2022-2023/String-Matching-dengan-Regex-2019.pdf
https://repository.uinjkt.ac.id/dspace/bitstream/123456789/15152/1/SUPARDI-FST.pdf
https://repository.uinjkt.ac.id/dspace/bitstream/123456789/15152/1/SUPARDI-FST.pdf
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0
https://www3.ntu.edu.sg/home/ehchua/programming/howto/Regexe.html
https://www3.ntu.edu.sg/home/ehchua/programming/howto/Regexe.html

